Background: The present study measures absolute alpha power using quantitative electroencephalogram (qEEG) in bilateral temporal and parietal cortices in novice soldiers under the influene of methylphenidate (MPH) during the preparatory aiming period in a practical pistol-shooting task. We anticipated higher bi-hemispheric cortical activation in the preparatory period relative to pre-shot baseline in the methylphenidate group when compared with the control group because methylphenidate has been shown to enhance task-related cognitive functions.
Methods: Twenty healthy, novice soldiers were equally distributed in control (CG; n = 10) and MPH groups 10 mg (MG; n = 10) using a randomized, double blind design. Subjects performed a pistol-shooting task while electroencephalographic activity was acquired.
Results: We found main effects for group and practice blocks on behavioral measures, and interactions between group and phases on electroencephalographic measures for the electrodes T3, T4, P3 and P4. Regarding the behavioral measures, the MPH group demonstrated significantly poorer in shooting performance when compared with the control and, in addition, significant increases in the scores over practice blocks were found on both groups. In addition, regarding the electroencephalographic data, we observed a significant increase in alpha power over practice blocks, but alpha power was significantly lower for the MPH group when compared with the placebo group. Moreover, we observed a significant decrease in alpha power in electrodes T4 and P4 during PTM.
Conclusion Although we found no correlation between behavioral and EEG data, our findings show that MPH did not prevent the learning of the task in healthy subjects. However, during the practice blocks PBs it also did not favor the performance when compared with control group performance. It seems that the CNS effects of MPH demanded an initial readjustment period of integrated operations relative to the sensorimotor system. In other words, MPH seems to provoke a period of initial instability due to a possible modulation in neural activity, which can be explained by lower levels of alpha power (i.e., higher cortical activity). However, after the end of the PB1 a new stabilization was established in neural circuits, due to repetition of the task, resulting higher cortical activity during the task. In conclusion, MPH group performance was not initially superior to that of the control group, but eventually exceeded it, albeit without achieving statistical significance.
(Free full text).